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Summary 
This research project was aimed at investigating the applicability of a new filter design 
technique invented by Dr. Beylkin at University of Colorado to develop a design 
automation tool for implementing filters in adaptive computing systems (ACS) using 
FPGA devices. Angeles Design Systems provided the design automation environment 
and USC/ISI provided the adaptive computing testbed for testing the filter designs. 
USC/ISI also provided overall project management. 
 
In the first year, Angeles carried out several experiments with filters designed by 
Colorado to evaluate the cost of these filters in ACS devices. USC/ISI provided the basis 
for the cost calculations. Angeles used their automated optimization tools to calculate the 
cost of the hardware-optimized designs. It was determined that the filters designed with 
the existing Colorado techniques (Appendix A) did not reduce the cost compared to 
conventional filter designs. The results of the Angeles experiments indicated that the 
Colorado technique was reducing the computational cost significantly but increased the 
memory cost in ACS systems. This is because in ACS devices, USC/ISI research 
indicated that memory cost dominates.  
 
In response to the above results, in the second year Colorado further developed the theory 
and created the “sub-sampling” factored FIR filter design technique (Appendix B). 
Experiments conducted by Angeles using their design automation environment 
(DSPCanvas) indicated that this new technique yields the same computational cost 
reductions as the original technique and dramatically lowered the memory costs. As an 
example, a stringent filter required in radar system at MIT Lincoln Labs was used as 
benchmark. It was found that the new technique developed under this program yielded a 
70% overall cost reduction for the radar filter compared to conventional filter design 
techniques (see results section in this report). USC/ISI researched applications and 
identified the Radar filter for benchmarking.  
 
In the third year, Colorado provided support for integration of their filter design software 
with Angeles design automation environment. Angeles developed the ACS (FPGA) 
design generator (in VHDL) to translate the filter design to actual hardware 
implementation. Angeles experimented with different ACS based architectures to 
determine the lowest cost memory implementation. USC/ISI carried out testing of the 
hardware designs on their ACS platform to validate the design automation tools. 
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Introduction 
Filters form a substantial part of many defense signal-processing systems such as radar 
receivers. Due to changing system requirements (depending on the theater of operation) 
the filter designs need to be frequently changed. Manufacturing new hardware for every 
new requirement is an expensive proposition and also limits the military’s agility to 
change the system in the field. ACS technology developed at USC/ISI allows the same 
hardware to be reprogrammed in the field for different filter functions` thus eliminating 
new hardware costs and delays in deployment. ACS hardware, however, requires filter 
design techniques that reduce the cost (size) of the filter computations and memory 
requirements to allow implementation in ACS devices. Angeles Design Systems has 
commercial DSP design tools that allow optimization of filters for target hardware.  
 
To leverage ACS filter implementation for DoD applications USC/ISI, Colorado and 
Angeles partnered on this project to develop and implement a filter design tool that 
allows the resulting filter hardware to be implemented in ACS devices. 
 

Methods, Assumptions and Procedures 
 
Methods:  

1. Sub-sampling (Appendix A)),  
2. System Solve for cost analysis and hardware optimization (ref web site),  
3. USC/ISI ACS platform  

 
Assumptions:  

1. Target technology is ACS devices 
2. Filter designs requirements can be expressed by frequency response and SNR 

specifications 
3. System stability requires polynomial filters 

 
Procedures:  

1. Identified benchmark 
2. Experimented with conventional technique and proposed techniques 
3. Evaluated results using actual ACS hardware parameters 
4. Developed new techniques based on experimental results to achieve goal of cost 

reduction, while maintaining automation of design techniques. 
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Results and Discussion 
 
The benchmark radar receiver filter represents extremely stringent requirement, which 
usually result in high precision computational hardware thus driving up cost.  
 
The new techniques developed under this program not only provide 70% cost reduction 
compared to conventional techniques but also better performance Signal to Noise Ratio 
(SNR). This is due to reduced precision required in the proposed filter function compared 
to conventional filters to achieve the same performance.  
 
A key reason for the success of this project was the ability of USC/ISI and Angeles to 
utilize real world hardware knowledge and design tools to pinpoint that source of costs in 
the filter design and Colorado’ ability to develop a technique specifically minimizing 
these costs while creating a fully automated design procedure. 
 
The radar front-end filter (obtained from MIT Lincoln Labs) is used for converting real ADC 
data into in-phase and quadrature radar samples in the IF stage of the receiver. This requires I 
and Q channel filters for conversion from IF to baseband. 

The filter specs to accomplish this are given below: 

•Input Signal bandwidth: 250 kHz centered at 2.5 MHz  

•IF Input Sample Rate from ADC: 10 MHz sampling.  

•Output baseband sample rate: 625 kHz  (decimation by 8 in each filter) 

•Passband cut-off (for each filter): 125 kHz 

•Stopband edge (for each filter): 312.5 kHz 

•Stopband attenuation: 90 dB 

The same filter was designed using 3 different algorithms, with responses and costs as shown 
below. Note that the sub-sampled factored FIR filter developed on this project costs 33% of 
the conventional filter design currently used in the radar front end, while providing superior 
attenuation and SNR performance. The design and implementation of this filter in ACS 
devices (FPGAs) has been fully automated as described in Appendix C. 
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.  

150th order conventional FIR filter frequency response 
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FIR Filter Cost/Performance: 

Design Attenuatio
n 

SNR Coefficien
t Precision 

Datapath 
Precisio
n 

Cost 

Optimized -90.4471 91.1 
dB 

<20, 20, 
7> 

<20, 20> 9608.
5 

 

 

Factored FIR Cost/Performance: 

Cost Attenuatio
n 

SNR Coefficien
t Precision 

Datapath 
Precisio
n 

Taps 

6916.2 -99.1365 54.2
7 dB 

FIR      
<30, 30, 
8> 

Factored 
fir 
<40,22,5> 

<40, 40> 80 

 

Sub-sampled factored FIR Cost/Performance: 

Cost Attenua
tion 

SNR Coefficient Precision Datapath 
Precision 

Factors 

     Fac fir 4: 25, 8, 4 

Fir : 36, 31, 8 

Fac fir 0: 8, 4, 1 

Fac fir 1: 4, 2, 1 

3154.55 -118.54 116.4 
dB 

Fac fir 2: 4, 2, 1 

35, 33 Taps 0 = 8 
Taps 1 = 8 
Taps 2 = 8 
Taps 3 = 8 
Taps 4 = 35 
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Conclusions 
In conclusion, the research objectives of developing an automated filter design technique 
for low-cost ACS implementation, was achieved. Colorado developed a new theory as 
well as computer program. Angeles integrated the Colorado design program in to their 
commercial design environment and developed cost calculation tools and hardware 
generation tools specifically for ACS implementation. USC/ISI provided the ACS 
expertise and knowledge base and carried out the final demonstration of the project. 
 
A key impact of this project was the combination of theory (Colorado), practical design 
tools (Angeles) and actual hardware prototyping (ISI). Based on the tools and hardware 
feedback, the original theory was modified to develop a completely new type of filter 
structure, which is well suited for ACS implementation and provides substantial 
advantages over conventional filter structures. 
 
In the above project the filter theory was advanced to ensure reduction of the memory 
requirements in the ACS device. A future project could aim at further advancing the filter 
theory so that the coefficients are optimized to be closer to values that reduce the ACS 
hardware requirements.  
 
Other techniques to reduce filter complexity generically reduce the total computational 
needs. This may not however reduce actual hardware as established in the above project. 
The uniqueness of this project lies in the fact that the actual factors affecting ACS 
hardware complexity were first identified and then the filter theory was developed to 
minimize these factors. This has led to the most powerful ACS filter design approach. 
 

 

References 
See appendices A, B, and C. 

 



 

 

 

8 

 Appendix A 
 

 



 

 

 

9 



 

 

 

10 



 

 

 

11 



 

 

 

12 



 

 

 

13 



 

 

 

14 



 

 

 

15 



 

 

 

16 



 

 

 

17 



 

 

 

18 



 

 

 

19 



 

 

 

20 



 

 

 

21 



 

 

 

22 



 

 

 

23 



 

 

 

24 



 

 

 

25 



 

 

 

26 

Appendix B 
 

Technical Report 

Generalized Variable Precision Filters 

for Adaptive Computing Applications 1 

 

Theoretical background for the implementation 

of factored FIR approximation of IIR filters 

 

Gregory Beylkin and Lucas Monzón 

June 6, 1999. Revised October 15, 1999 

 

Introduction 

A great variety of digital filters can be readily designed as Infinite Impulse Response (IIR) filters.  
These IIR filters are typically implemented via recursive algorithms or by approximations using Finite 
Impulse Response (FIR) filters.  In the latter case, we are interested in approximating the frequency 
response function of the IIR filter, a rational function, by the frequency response function of an FIR filter, a 
polynomial function.  One standard approach is to find the FIR filter by some optimization over fixed 
degree polynomials. 

In our approach (see [1]), the degree of the polynomial approximation is not fixed. Instead, an 
efficient and accurate implementation is achieved by representing the approximating 
solution as a cascade of very simple FIR filters.  The degree of the approximating 
polynomial could be high to obtain the precision sought although the cascade 
representation induces a relatively small number of operations.  The number of factors in 
the cascade depends on the accuracy sought and is not very large.  Higher accuracy can 
be obtained by adding extra factors to the representation.  Thus, depending on the desired 
precision on the filter output, one can uniquely specify the number of factors in the 
cascade.  Hardware efficiency come from the fact that only the minimum required factors 
are computed. 

We note that if this technique is applied to IIR Quadrature Mirror Filters, we obtain a FIR filter 
that satisfies the quadrature mirror condition with any desir1ed accuracy. 

Let us now describe the FIR approximation. 

Given any IIR filter ( ) ( )
( )zQ
zP

zH = , where P and Q are polynomials, the FIR approximation F(z) 

can be written as  

  ( ) ( ) ( )k

zFzF
n

k
k

2

0
∏

=

=   (1) 

where each F(k) (z) is a polynomial.  In particular, 

( ) ( ) ( ) ( )zQzPzF −=0  

and, for k > 0, the degree of F (k) (z) is at most the degree of Q(z). 
                                                 
1 DARPA grant F30602-98-1-0154 
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Implementation reducing memory requirements 

Even though each factor F(k)(z) in (1) is itself a cascade of 3-tap FIR filters, there are large delays 

in the factors ( )( )k

zF k
2  which significantly increases the cost of memory.  Nevertheless, if the output of 

applying the filter F(z) is bandlimited, we can use a subsampled version of F(z) which drastically reduces 

the memory cost. 

Subsampling design 

Let X(z) be the z-transform of a sequence {xk}, i.e. 

  ( ) ∑
∈

=
Zk

k
k zxzX   (2) 

Let us denote by X0, X1 the polyphase components of X(z), 

  ( ) ∑=
k

k
k zxzX 20   (3) 

  ( ) ∑ +=
k

k
k zxzX 121  (4) 

The operator 2? stands for subsampling by two, that is, it does retain only the even entries of the 
sequence: 

  2?:{xk}? { x2k }. 

We want to apply a filter A(z2) to a signal X(z) and then subsample the result. Let us call Y(z) the 
result of these two operations: 

  Y(z) = 2?(A(z2)X(z)). 

We note that it is possible to reverse the order of the operations.  Namely, we can first subsample 
the signal and then apply the filter A(z),  

  2?(A(z2)X(z))=A(z)(2? X(z)),  (5) 

where the order of operations is indicated by parenthesis. 

We now show how this observation is applicable to FIR cascades. 

 

Implementation of subsampled factored FIR approximation 

If the output Y(z), Y(z) = F(z)X(z) is band-limited then, it can be subsampled.  To illustrate the 
situation suppose that Y is subsampled by a factor of eight and that the filter F consists of five factors, that 
is n = 4 in equation (1). 

 We can compute Y~  , the subsampled version of Y, using the discussion above. Each step of 

subsampling changes the application of a filter ( )( )k

zF k
2  to application of ( ) ( )12 −k

zF k . 

In this example, we obtain (operations are applied from left to right) 

 ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )zXzFzFzFzFzFzY 0
2

1
4

2
8

3
16

4222
~

↓↓↓=   (6) 

          ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )zXzFzFzFzFzF 0123
2

4 222 ↓↓↓=   (7) 

Clearly, there is a substantial improvement in using (7) instead of (6) for the computation of Y~ . 
After applying F(0) , at each stage the result is subsampled by a factor of two with the corresponding savings 

(3) 

(4) 
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in memory.  The memory requirement is dictated by the power of z in the argument of F(k) and that power is 
reduced in all factors. 

If Y~  is the answer we are seeking, the computations can be stopped at this stage.  If instead we 

are interested in Y , we can first compute Y~ and then upsample it to obtain Y. 

We now discuss further improvements. 

Faster implementation of some factors 

By construction, the higher the value of k, the smaller the length of F(k)(z) and also the smaller the 
absolute value of some of its coefficients.  This indicates that an additional saving can be achieved if we 
expand these factors F(k) to obtain their coefficients rather than to keep them in a factored form. For those 
factors we discard all coefficients below the target accuracy.  This direct implementation is faster than 
applying them as a cascade. 

Other possible subsampling 

The procedure described above is not limited to the particular way in which subsampling is 
achieved in (7).  Any linear combination of the polyphase components could be used.  Specifically, with 
the notation of (3) and (4), any operator of the form  

  ( ) ( ) ( ) ( ) ( )zXzSzXzRzX 10 +→   (8) 

where R and S are any function, can be used instead of 2? .  For example, if we use the Haar filter 

2
1 z+

to decompose a signal into its low and high components, the low component corresponds to 

choosing R(z) = S(z) =1/2 in (8). 

 

 

 [1] G. BEYLKIN, On factored FIR approximation of IIR filters, Applied and Computational Harmonic 
Analysis, 2, pp. 293-298, 1995. 
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Appendix C 
 

Filter Design Tool and Architecture 
 

1. Design Methodology 
The design process (fig. 1) starts with a filter specification. The filter specification depends on the 
application and typically includes a frequency response characteristic and desired windowing method. 
The optimization process is based on DSPCanvas. The optimization constraints are the SNR (signal to 
quantization noise), the passband ripple, and the stop band attenuation. The target technology 
determines the hardware cost to implement the filter. The filter is then optimized for finite precision 
arithmetic, using cost functions specifically geared towards optimizing for the target technology. A 
VHDL generator is available to generate the filter automatically using the optimized finite precision 
results. A seamless flow is available to put the filter on hardware. 

Filter 
Specifications

Matlab

Ref IIR Filter 
coefficients

Factored 
Filter Program

DSP Canvas 
Simulation

FIR Filter 
coefficients

Factored 
FIR

“C” Model

ACS Cost
function

Finite-precision
Optimization

DSP Canvas
VHDL generation

VHDL
Synthesis

VHDL
Simulation

Place
and route

FPGA
bitstream

Timing analysis
and verification

HARDWARE
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VHDL
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FPGA
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DSP Canvas
VHDL generation

VHDL
Synthesis

VHDL
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Place
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FPGA
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HARDWARE

 

Figure 1 Design Flow 

 

2. FIR Filter Design 
The relationship between the FIR filter’s input sequence x(n) and its output y(n) is 

( ) ( )∑
−

=

−=
1

0

N

k
k knxbny  
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with N representing the number of coefficients in the filter.  A structure directly derived from this 
relationship is shown in Figure  where the in-line triangles represent a multiplication by a coefficient bk.  
Choosing these coefficient values is accomplished through standard filter design techniques. 

z-1 z-1 z-1

...
+ + +

x(n)

y(n)
 

Figure 2 FIR Filter 

There are several ways of designing and implementing a FIR filter in DSP Canvas.  One convenient 
method is to use the Matlab engine interface via a Matlab model in a DSP Canvas schematic.  Using 
this model, one can specify a desired piecewise linear frequency response, type of filter, and the 
number of filter coefficients, as illustrated in Figure . Alternatively, a filter may be designed outside of 
DSP Canvas, and DSP Canvas simply loads a vector of coefficients from a data file into a standard FIR 
filter model. 

 

Figure 3 Filter specification for Matlab 

3. Optimization Strategy 
The goal of the optimization process is to find the lowest cost solution that meets the filter design 
constraints.  The three components of the filter optimization system are:  

• Filter and architecture parameters 

• Filter design constraints 

• Cost function 

In general, the filter parameters (such as coefficient quantization width) determine the architectural 
parameters (such as datapath precision), which results in a certain implementation cost.  As the filter 
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parameters are varied, the filter constraints must be checked to ensure that the filter satisfies its design 
specification.  

3.1 FIR Filter Parameters 
 There are four classes of parameters for FIR filters: 

• Input encoding 

• Coefficient encoding 

• Accumulator encoding 

• Output Encoding 

For the multiply-accumulate operations in Figure , consider a 2’s complement. In DSP Canvas, the 
precision of 2’s complement numbers is represented as the pair <w,d>, where: 

<w> is the total number of bits 

d defines the location of binary point at <d> bits to the left of the LSB i.e. the LSB has a value  
d−2  

Using this definition, the smallest non-zero value in magnitude is d−2 , the greatest positive value is 

( ) dw −− ⋅− 212 1 , and the greatest negative value is dw −− ⋅− 22 1 . 

Assume that the coefficients are encoded using canonical signed digit (CSD), where each digit 
may be a 1, 0, or –1.  For example, the 2’s complement representation of decimal 7 is 0111, whereas 

the CSD representation is 100 1  (-1 is represented by the symbol 1 ).  Note that a CSD-encoded 
number evaluates to the same value as a 2’s complement encoded number.  

In DSP Canvas, CSD numbers are represented as <w,d,nz>.  The third parameter nz 
represents the maximum number of non-zero digits allotted for a number, and its range is limited to 

2
0

w
nz ≤≤ .  Note that there is some degree of quantization if 

2
w

nz < . 

Thus, in total there are 5 parameters that can be varied while satisfying the filter specifications: 

Coefficient encoding: w, d, and nz, i.e. coefficient<w,d,nz> 

Accumulator encoding: w and d, i.e. accumulator<w,d> 

The dialog box in Figure  illustrates the entry of these five parameters in DSPCanvas. The designer can 
manually change these parameters to optimize them or use the scripts described in this note to 
automatically search for optimal values. 
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Figure 4 Filter Optimization Parameters 

Lastly, the encoding of the input and output values depends on the system requirements of the 
application (e.g. A/D resolution), and thus are not varied by the optimization script.  

3.2 Architectural Parameters 
This project uses a shift-add accumulate architecture (fig. 4) for the FIR filter. 

memory

barrel shifter

register

accumulator

 

Figure 5 Shift-Add Architecture 

The memory is used to store input samples of the filter.  The width of the memory is determined by the 
input precision, whereas the width of the datapath (i.e. shifter, accumulator and register) is determined 
by the coefficient precision and input precision.  While the ideal datapath precision is the sum of the 
coefficient width and input width, a lower precision may satisfy the specifications and can be obtained 
using the scripts described in this note.  
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In a shift-and-add architecture, each non-zero digit in a coefficient requires one cycle of processing.  
Thus, while the CSD encoding of coefficients introduces quantization error into the filter, it reduces the 
number of cycles (cycle count) required to compute each sample.  Minimizing the maximum number of 
non-zero bits allows for a convenient tradeoff between the cycle count and the frequency response.  

The two architectural parameters, namely datapath width and cycle count, are necessarily a function of 
the filter parameters. This function defines the cost of the filter as discussed below. 

3.3 Cost Function 
The goal of optimization is to minimize a particular design’s “cost”, which is provided by a cost function.  
A cost function appropriate for the shift-and-add architecture is 








 ×
×+=

frequency system
count cycle

cost arithmeticcostmemory cost rearchitectu sf
 

where “memory cost” is the cost of memory, “arithmetic cost” is the cost of one shift-add datapath in 
Figure . The ceiling operation provides an integer number representing the number of parallel 
datapaths required to meet the filter’s sample rate requirement, given the underlying technology’s 
circuit speed.  fs is the desired sample rate, “cycle count” is number of shift-add cycles required, and 
“system frequency” is the clock rate of the datapath (i.e., number of cycles executed in one second). 
These multiple datapaths share one memory unit, as is reflected in the cost function. The illustration in 
Figure  shows the dependencies of the cost on the architectural parameters (cycle count and datapath 
width), and in turn their dependence on the filter parameters (w, d, nz). The filter parameters are 
determined by the specifications. The cost function can be symbolically specified in DSPCanvas or in a 
C program (depending on the complexity) as discussed in another section of the tutorial document. 

# of cycles

 δ1

SNR

memory
cost

arithmetic
cost

datapath
width

architecture cost

coefficient
w, d, nz

accumulator
w, d

 δ2

 

Figure 6  Cost calculation for FIR structure 

3.4 Filter Constraints 
There are several specifications from traditional FIR filter design that are used as constraints in the 
optimization process.  Clearly one would like to ensure that the filter specifications are satisfied when 
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optimizing the design.  Refer to the frequency response curve in Figure , typical for a low-pass filter.  
The filter’s passband extends from 0 to f1 Hz, whereas the stopband begins at f2 Hz. 

A
m

pl
itu

de

Frequency

f2

1

f1

1-δ1

δ2

 

Figure 7 Filter Constraints 

The ripple in the passband is measured to be δ1 dB, and the filter’s attenuation at f2 Hz is δ2 dB.  We 
use δ1 and δ2 as constraints in the optimization script.  Although simplified for some filter applications, 
using these two specifications as design constraints is applicable for most low and high-pass filters. 

Furthermore, there is a relationship between the accumulator bit-width and the quality of the filter’s 
response.  As the precision of the accumulator in a shift-and-add architecture is reduced, the response 
deviates from a purely floating-point system; this deviation is modeled as noise in the system response.  
Thus, when a finite precision accumulator is introduced, we measure the signal-to-noise ratio (SNR) of 
the finite precision filter response yfinite relative to a floating-point design yref : 
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( )( )2

2

log10SNR
finiteref

ref

yyE

yE

−
=  

Figure 8 SNR Speciciation 

The next section describes how the frequency specifications and SNR constraints are described in the 
optimization scripts in DSPCanvas 

4. Optimization Tool in DSP Canvas 
The five optimization variables noted in Figure  create a five-dimensional space, over which one is to 
find a minimum cost solution.  In order to reduce the search time, we adopt a two-step optimization 
strategy, taking advantage of certain theoretical facts to partition the search.  The filter specifications of 
passband ripple and stopband attenuation are affected only by how the coefficients are encoded, 
whereas the SNR is affected by the accumulator.   

The optimization script is shown in Figure , where there are two multivariate optimization loops. 
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In the first loop of the optimization script, the coefficient parameters are varied, while the accumulator 
remains floating point; each time the coefficient’s encoding is changed, the filter’s passband ripple and 
stopband attenuation are checked to ensure they meet specifications.  Once minimum cost coefficients 
are discovered, the script advances to the second loop where the accumulator precision is varied and 
the SNR is measured relative to the original floating point design. The two loops are described below. 

 

Figure 9 Optimization script 

4.1 Fixed Point Coefficient Optimization 
The first loop of the script repeatedly simulates the filter for different combinations of coefficient 
encoding and checks whether the frequency response satisfies the specifications, while calculating the 
cost. 

The variables (fig. 10) ripple and atten correspond to the filter specifications of δ1 and δ2, 
respectively.  These variables are used in the optimization block as constraints, as is illustrated in  
Figure . The optimization script uses the search space defined by the ranges of the loop variables.  In 
Figure  these are listed as b_fir, b_fir_prec, and b_fir_nz; these variables correspond to the 
three parameters in coefficient<w,d,nz>. Note that the cost function is specified as an 
externally defined function.  In this case it is a C function named “cost_fir”, which takes the filter 
parameters from the command-line input, formulates the architectural parameters of datapath_width 
and cycle_count, and returns an architectural cost. 
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Figure 10 Optimization Dialog Box 

The simulation schematic used in the loop for coefficient optimization is shown in Figure 11. As 
illustrated, the impulse response of the filter is being measured. The parameters 
coefficient<w,d,nz> are varied and passed to this schematic from the optimization script; note 
that the input and accumulator of the filter are specified to be floating point.  Once simulated, the 
frequency and phase response are stored in data files. The optimization script uses the “set” block to 
calculate the resulting passband ripple and stopband attenuation to check if the constraints are 
satisfied.  To do this, the “set” block in the script reads the frequency response data files (using the 
”get_col_op” function) and performs the following computations using “jet_set_eval” commands: 

w1=floor(fft_length*f1) 

w2=ceil(fft_length*f2+1) 

max_ripple=max(filter response in passband) 

min_ripple=min(filter response in passband) 

ripple=max_ripple-min_ripple 

atten_sb=(filter response at w2) 

atten=atten_sb-min_ripple 
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Figure 11 Optimization Schematic 

4.2 Fixed Point Accumulator Optimization 
Once the first loop has finished, the best combination of coefficient<w,d,nz> is fixed and the 
script moves on to the second loop (the bottom half of the script in Figure ).  

 

Figure 12 SNR Optimization Dalog Box 
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The optimization settings for this loop are illustrated in Figure . Note that the accumulator encoding 
settings are now the loop variables, and the SNR is the constraint.  To calculate the SNR, the second 
loop simulates the schemat ic in Figure .  

The strategy of this schematic is to investigate finite precision effects by comparing the performance of 
a filter with a fixed-point datapath versus a filter with a floating point datapath.  As illustrated, there are 
two filters being used.  The bottom filter is a complete fixed-point FIR filter, where the 
coefficient<w,d,nz> encoding is the determined in the first loop, and the accumulator encoding is 
varied by the second loop.  Furthermore, the input and output precisions of the filter are specified.  The 
FIR filter in the upper portion of the figure differs only in that the accumulator is floating point; this is 
termed the “reference” filter.  A single sinusoid centered in the filter’s passband is used as input 
stimulus to the two filters, and the resulting SNR is measured and passed back to the optimization 
script.  This value is used as the SNR constraint in Figure .  As in the first loop, the external cost 
function is called to provide the architectural cost of the system. 

 

Figure 13 SNR Optimization schematic 

Once the second loop has finished, optimal values of all parameters are determined and the 
optimization script terminates. 

5. Factored FIR filter design 
A factored FIR approximation of IIR is an alternative implementation of an IIR filter. A factored 
FIR approximation for the IIR filter described above is generated using the Colorado design 
software. This single stage filter contains 40 factors (maximum delay 2048). IIR filters are 
inherently unstable in fixed precision mode. This is a method to stabilize the IIR filter with very 
little extra cost, at the same time, preserving the sharp cutoff features of the IIR filter. 
The factored FIR filter has a transfer function as follows: 

 

Figure 15 shows the structure for the factored FIR filter. 
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Figure 14 Factored FIR Cost Calculation 

 
P(z) has the same parameters as a conventional Fir filter. However, the cascaded factors present 
additional parameters for optimization. The factored FIR filter has a very high cost of memory. Even 
though the arithmetic units are reduced the memory cost shoots up. Each of the factors are essentially 
a 3-tap FIR filter, but the delays between the taps are variable. Pi and Qi are generally much greater 
than 1. This essentially increases the cost of memory, especially when using FPGA architectures that 
do not have dedicated memory elements like Xilinx 4000. However, architectures such as the Xilinx 
Virtex devices may be much more efficient, since they have embedded memory elements. Figure 14 
shows the cost calculation for the factored FIR structure. 
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Figure 15 Factored FIR structure  
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5.1 Sub-sampled factored FIR 
The factored FIR filter has a very high cost of memory. To reduce the cost of memory the sub-sampled 
factored FIR filter(fig. 16)  was developed on this project. This preserves all the good features of the 
factored FIR filter, at the same time reducing the cost of memory. 

Single Stage Filter

Filter
Stage 1

5 MHz 625 KHz

5 MHz
2.5 
MHz

1.25 
MHz

625 
KHz

Filter
Stage 3

Filter
Stage 2

Single Stage Filter

Filter
Stage 1

5 MHz 625 KHz

5 MHz
2.5 
MHz

1.25 
MHz

625 
KHz

Filter
Stage 3

Filter
Stage 2

 

Figure 16 Sub-sampled Factored FIR Strcuture  

An additional degree of freedom in optimization is the number of factors used. As an example, if a 
single stage requires 40 factors with maximum storage of 512, then a sub-sampling multistage might 
require, in the worst-case, 24 factors with maximum storage of 128. Factors with large storage have 
small coefficients and the optimization tool exploits this by dropping factors in order of increasing value 
of coefficients. 

 5.2 COST COMPARISION PLOTS 
As shown in figures 17-22, the sub-sampled factored FIR filter design, developed on this 
project,  offers a significant cost reduction (fig.19), while providing superior performance 
(figures 21-22). 
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Figure 17 Sub-sampled Factored FIR requires lowest coefficient precision 
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Figure 18 Subsampled Filter has superior SNR performance 
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Figure 19  Subsampled Factored FIR offers lowest cost 
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Figure 20  Cost Break-down 
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Figure 21 Frequency response comparison 
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Figure 22: Optimized fixed-point design versus Matlab floating point design 



 

 

 

43 

6. Computational Architecture Design for FPGA 
 
This filter architecture (figures 23 and 24)  is composed of storage elements implemented with dual port 
rams, the product of the coefficients, implemented by barrel shifters and an accumulator, which 
implements the addition. The filter receives samples at a rate of fs which is a multiple of the system 
clock. Given the amount of computations that need to be performed, certain degree of parallelism is 
necessary in order to achieve the desired sample rate.  

 

...

y(n)

z-1z-1z-1 z-1

+ + +  
 

Figure 23 FIR Structure  
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Figure 24 RAM storage architecture  

 

The RAM(figure 25)  is used for the storage of the input data samples. The RAM used is dual port 
synchronous. The RAM is 16 words deep, and the width is the same as the input sample word. The 
ports for the RAM are write enable (WE), write address (A_W), read address (A_R), clock (CLK), input 
data (D_IN), and output data (D_OUT).  
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Figure 25 RAM Architecture  
 

A multiplication can be implemented on binary numbers by shifting the binary number, multiplicand, by 
the amount of the multiplier.  This is implemented by the barrel shifter, which takes a control binary 
number that indicates the amount of the shift. The inputs of the barrel shifter are the binary samples 
input to the filter. The implementation of the barrel shifter is performed with rows of multiplexors (figure 
26).  The multiplexors are 4 to 1 and each row performs a 0 to 3 shift.  
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Figure 26 Barrel Shifter 

Shifter based Transpose form: 
 
The transpose form of the FIR filter based on shifts and add/sub also uses the CSD notation to 
minimize the number of add/subs. For smaller filters (fewer taps) and for system_clock/sample_clock 
ratios that are small, this architecture could perform better.  

 

7. Storage Architecture Design 
 

1. Arithmetic Units with RAM for storage of input words.   

 
The RAM used in this architecture is a dual port RAM as shown below: 



 

 

 

45 

 

samples 

bit 

  N-1   N-2   N-3  0
  1 

2 
 
 
 
 
 
16 

 
 
Memory and control logic cost calculation : 

System clock to sample clock rate Fsys/Fs <= 16 

Number of arithmetic units depends on the number of non-zero operations and on Fsys/Fs  :  nzops * 
Fs/Fsys 

For each RAM the cost of control logic is:  

 4 bit counter for address read : 2 CLB’s @ Fsys 

 4 bit counter for address write : 2 CLB’s @ Fs 

 initial counter value  :   2 + 2 CLB’s @ Fsys 

 final counter value  :   2 + 2 CLB’s @ Fsys 

total for each AU :  12 CLB’s 

2. Use of registers for storage of input words.  

In this architecture (shown below) we store the input words on shift registers. Each arithmetic unit 
accesses the relevant input sample using multiplexors. 
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bit 

samples  

 
 
 
• Cost of Memory 
Each input is stored in one register bank. Each input needs to store N bits, corresponding to the width 
of the input word. Two bits can be stored in one CLB.  

 
Cost for one tap (CLBs):  ceil [(input word width) / 2]  
Total cost of memory:  (number of taps) * {ceil [(input word width) / 2]}  

 
• Cost of control logic: 
The control logic needs to select the appropriate sample for each of the arithmetic units. The 
architecture of this control logic is implemented with a series of multiplexors (figure 27).  

 
- Number of Mux’s per AU depends on number of samples accessed.  

Each CLB can hold up to one 4:1 Mux.  
Average number of samples accessed/AU = (# taps * Fsys)/(Fs * nzops) 
B=ceil[(tap*Fsys)/(4*nzops*Fs)] 

 
Taps/AU Mux’s/AU 

1 Wired, 0 
<=4 B 
<=16 B + 1 
<= 28 B + 2 
<= 40 B + 3 

Table 1 

 
- Control 

Counter: Need only one counter for all AUs 
ceil [log2(Fsys/Fs)/2] 
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Controls for multiplexors:   
 Each 4:1 Mux needs 2 control signals: 1CLB 
 For each AU need:  ceil [Fsys/(16*Fs)] 
 Total cost of control:  ceil [Fsys/(16*Fs)] * (number of Mux’s) 

• Total Cost: 
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  represents the number of multiplexors for the corresponding number of 

samples/AU as shown in Table 1.  

 

Figure 27 Multiplexor architecture to select coefficients 

 7.1 Architecture Comparison Plots 
To select the optimial storage architecture the cost of each srcuture was plotted as shown 
below (figures 28-38) for various fixed precision parameter values. Each figure has four 
plots: 

 
Upper Left Plot (UL):  
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 Shows the cost of memory and associated logic for RAM based architecture and 
Register based architecture. The red line is for the RAM and blue is for the register-based 
architecture. 
 
Upper Right Plot (UR): 
 Shows the total cost of memory, control logic and arithmetic unit (accumulator), 
for the RAM and register architectures. 
 
Bottom Left Plot (BL): 
Shows the cost of registers and access logic. For this plot blue for 1 non-zero ops/tap, 
green for 2 non-zero ops/tap, red 3 non-zero ops/tap, and light blue 4 non-zero ops/tap. 
 
Bottom Right Plot (BR): 
 Shows the total cost for all 3 architectures. The RAM based in red, the register 
based in blue and the transpose form in light blue asterisk lines.  

 
 
Notes: 

The plots for the RAM configuration show an increase in discrete steps. These steps 
correspond to the frequency ratio fr = fsystem/fsample. In 1 sample clock cycle, we can 
operate on fr non-zero bits of the coefficients. If the ratio increases, we will need 
fewer RAMS. If the ratio decreases we will need more RAMS. On each RAM we can 
buffer 16 input samples. As the ratio increases the discretization increases linearly.  
 
For the plot displaying the register configuration we notice that with an increase of 
the number of non-zero operations the curves do not increase linearly.  This is due to 
the discretization performed by ceil(A) operation, which rounds up the value A to the 
next integer. From the cost function for registers we have the term  
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, which accounts for this trend. For a fixed tap value, 

a fixed frequency ratio, and we vary the number of non-zero operations we obtain the 
following results. 
 

Cost
CLB

Non-zero
ops

1

7

6

5

4

3

2

Fsys/fs=5

1

6

5
4

3
2

Fsys/fs=10

 
 
  



 

 

 

49 

The CLB cost of the AU is greater than the cost of memory. The effect is seen when 
we compare plot2 and plot3. The cost in plot2 is not linear as explained on the 
previous note. The cost in plot3 corresponding to the register configuration increases 
linearly given that the cost of the AU increases linearly with the number of non-zero 
operations/tap, and this increase is much greater that the cost of memory.   
 
Figures 28-38 show the same plots for different values of Fs/Fclk, input word width, 
accumulator width(bit precision): 

 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  

Figure Fr = Fs/Fclk Input Width Accum Width 
28 15 16 24 
29 10 16 24 
30  2 16 24 
31 15 16 32 
32 10 16 32 
33 15 8 16 
34 10 8 16 
35 15 8 12 
36 10 8 12 
37 15 16 40 
38 10 16 40 
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Figure 28  Storage Cost Comparison 

 
Figure 29  Storage Cost Comparison 
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Figure 30  Storage Cost Comparison 
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Figure 31  Storage Cost Comparison 

 

Figure 32  Storage Cost Comparison 
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Figure 33  Storage Cost Comparison 

 
Figure 34  Storage Cost Comparison 
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Figure 35  Storage Cost Comparison 

 

 
Figure 36  Storage Cost Comparison 
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Figure 37  Storage Cost Comparison 

 

 
Figure 38  Storage Cost Comparison 
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8. Performance Optimization for FPGA Architecture 
The RAM based architecture puts some stringent constraints on the clocking schemes. 
The input samples are arriving on the sample clock edges. The arithmetic operations are 
happening on the system clock edges. The ratio Fs/Fclk (system clock speed/sample 
clock speed), specifies the number of arithmetic (shift-add-accumulate) operations that 
are possible before the next sample arrives. The input samples are stored away in the 
RAMs. Depending on the Fs/Fclk ratio and the number of non-zero bits in the CSD 
representation of the coefficients, there could be many parallel RAM/Arithmetic Units. 
These are daisy chained. So, as the first RAM reads data, that particular input sample is 
written to the next RAM (RAM 2). 
 

 
Figure 39 RAM based architecture  

 
However, depending on the number of non zero bits per coefficient and the way they are 
organized, it could very well turn out that the Arithmetic Unit (AU) is looking for a 
particular sample in a particular RAM, before it has arrived at that RAM. For example, 
consider the case where the Fs/Fclk =  4 and the first coefficient has 6 non-zero bits. In 
this case, the input data needs to be written to two RAMs simultaneously. The RAMs 
cannot be daisy chained as above, but need to be connected as below. This tends to break 
the “clean” daisy chain that would otherwise be possible, and also creates an architecture 
that has very different implications in terms of timing due to the capacitive loading and 

 
Figure 40 Load balancing of arithmetic units 

 

input 

Parallel Arithmetic Units 

input 

Parallel Arithmetic Units 



 

 

 

57 

routing due to more fanouts. This can become a serious problem if the same input fans 
out to 3 or more RAMs. DSP Canvas, can automatically figure out when this kind of 
connection is necessary. (Style 0 and Style 1 in the filter parameters menu control this). 
However, by slightly manipulating the coefficients (manually), the first architecture can 
be made to work. For instance, at a quantization of 8 bits, 0.002104759 has 10001001, 
but by slightly changing this to 0.002120971, this has 10001011, and by changing this to 
0.002075195, this has 10001000. This can significantly change the allocation of 
coefficients to arithmetic units and could result in moving from style 1 to style 0 (the 
clean daisy chain). In such a case, the COEFFICIENTS.d file can be manually changed to 
reflect the new coefficient and VHDL generator rerun. This can significantly improve 
timing and routing on the FPGA. 
 

 
Figure 41 Filter modifications to reduce logic complexity 
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When the number of coefficients is small or when the Fs/Fclk ratio is small, then the 
regular transpose form FIR can perform very well. This architecture does not involve 
multiple clocks and the overhead of the RAM is not there. However, if the Fs/Fclk ratio is 
very high (> 10) and if the filter is a large filter (> 50 taps), the RAM based architecture 
can provide significant area savings. The CSD notation acts to minimize the number of 
non-zero operations, so fewer parallel RAMS are needed. 
 
In some cases, this could be a problem. For example, if the nz_ops (non zero bits), it not a 
multiple of the number of RAMs, then the last AU is not fully utilized (figure 42). There 
are clock cycles of the system clock that need to be ignored by the accumulator. When 
the Fs/Fclk ratio is high, this can lead to significantly more hardware, in the form of 
comparators and multiplexors. An alternative to avoid this is to make sure the nz_ops are 
a multiple of Fs/Fclk ratio, which will reduce unnecessary logic. 
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Figure 42 The last stage of the parallel AU 




